Landing site reachability in a forced landing of unmanned aircraft in wind
نویسندگان
چکیده
Autonomous contingency management systems, such as a forced landing system which reacts appropriately to an engine failure is important for the safe operation of Unmanned Aircraft Systems (UAS). This paper details a method to ascertain the reachability of any possible emergency landing site for a forced landing in steady uniform wind conditions. With knowledge of the aircraft’s state, such as speed heading location and orientation of a landing site, a method to calculate a minimum height loss path is developed based on aircraft glide performance. Wind direction and speed are taken into account using a trochoidal approach by defining the minimum height loss turn path. To facilitate real-time implementation, simplified gliding equations are developed without accuracy loss. The reachability of each site can be calculated, as well as how much safety margin an aircraft would have. This method is generic and could also provide decision support for human pilots in forced landing situations. Two types of aircraft Airbus A320-400 and the Cessna 172 have been investigated to demonstrate the usefulness of the method, using Monte Carlo simulations in a synthetic X-Plane R © simulation environment, in order to demonstrate the performance and effectiveness of the proposed approaches. Index Terms Contingency management; Autonomous safety function; Unmanned aircraft systems; Reachability Analysis; Forced landing; Trochoids; X-Plane R ©.
منابع مشابه
Automatic Landing Guidance Systems and Design of an Optimal Landing Control System
Guidance and control of aircraft in the landing phase imposes extra pilot work loads, hence application of automatic landing control systems is of great importance. In this study automatic landing control systems are introduced and an optimal landing control system is designed. The control system performance criteria are based on minimum control effort. The designed system is simulated for a tr...
متن کاملEnabling Aircraft Emergency Landings Using Active Visual Site Detection
The ability to automate forced landings in an emergency such as engine failure is an essential ability to improve the safety of Unmanned Aerial Vehicles operating in General Aviation airspace. By using active vision to detect safe landing zones below the aircraft, the reliability and safety of such systems is vastly improved by gathering up-to-the-minute information about the ground environment...
متن کاملSynthesis and flight test of an automatic landing controller using Quantitative Feedback Theory
Landing is a challenging flight phase for automatic control of fixed-wing aircraft. For unmanned air vehicles in particular, it is imperative that model uncertainty be considered in the control synthesis. These vehicles tend to have limited sensors and instrumentation, yet must achieve good performance in the presence of modelling errors and exogenous inputs such as turbulence. Quantitative Fee...
متن کاملPerch Landing Assisted by Thruster (PLAT): Concept and Trajectory Optimization
A concept of the perch landing assisted by thruster (PLAT) for a fixed wind aircraft is proposed in this paper. The proposed concept is applicable to relatively large unmanned aerial vehicles (UAV), hence can overcome the limitation of existing perch landing technologies. A planar rigid body motion of an aircraft with aerodynamic and thruster forces and moments is modeled. An optimal control pr...
متن کاملDetermination of the Aircraft Landing Sequence by Two Meta-Heuristic Algorithms
Due to an anticipated increase in air traffic during the next decade, air traffic control in busy airports is one of the main challenges confronting the controllers in the near future. Since the runway is often a bottleneck in an airport system, there is a great interest in optimizing the use of the runway. The most important factors in aircraft landing modeling are time and cost. For this reas...
متن کامل